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Global Trends
○Many countries place “quantum technology” as a key technology
○Governments and private sectors are increasing related budgets for R&D, establishing core 

research centers, and developing human resources strategically.

Project for Innovative AI Chip and Next-Generation 
Computing Technology Development

2

○ National governments

Quantum manifest by European 
Commission’s advisory committee
EU Quantum Technology Flagship started
(~€1 billion-scale for 10 year)

Jun. 
2017 
2018

Each nation has own R&D projects. Netherlands 
and UK have created international research hubs.

Quantum communication and computer 
as major projects in “13th 5-year Plan on 
Science, Technology and Innovation”

National lab. for quantum information science and 
technology” under construction until 2020 (~$1 billion)

2016

“National Strategic Overview for 
Quantum Information Science” by 
National Science and Technology Council
“National Quantum Initiative Act” 
(up to $1.3 billion for 5 years from 2019)

Dec. 
2018

Sep. 
2018

Total Budget: 

About $209 million for 2020

• Q-LEAP Flagship Program
by Ministry of Education, Culture, Sports, Science and Technology (MEXT)

• MIRAI
by Japan Science and Technology Agency (JST)

by Ministry of Internal Affairs and Communications (MIC)

• R&D of Quantum Cryptography in Satellite
Communications

• Innovative AI Chip & Next-Generation
Computing Technology Development

• Opto-quantum base technology
by Cross-ministerial Strategic Innovation Promotion Program (SIP)

• MOONSHOT R&D Program
by Japan Science and Technology Agency (JST)

by New Energy and Industrial Technology Development Organization (NEDO)



Efforts in Japan
○ Quantum technology is recognized as an important core technology in the “5th Science and Technology 

Basic Plan” (approved by the Cabinet in January 2016). 
○ Maintain and improve world competitiveness in photonics and quantum technology specified in the Integrated 

Innovation Strategy (June 2018).

Promotion of the state-of-the-art research and industrial innovations

19991998

2010 IBM introduced a gate-based quantum computer 
on the cloud for public use (the first in the world).

Prof. H. Nishimori (Tokyo Institute of Tech.) 
invented the concept of Quantum Annealing

D-Wave Systems, Inc. (Canada) announced 
the world's first commercial quantum computer. 

Prof. Y. Nakamura and Prof. J. S. Tsai (NEC) 
developed superconducting qubit. 

2016

MEXT

Quantum 
cryptography 

CAO Quantum 
cryptography 
on satellite 
communications

JST-Mirai

Q-LEAP Quantum
metrology / sensing

Quantum 
computer
(gate)

Quantum sensor (NV 
center etc.)

Quantum gyroscope,
optical lattice clocks

Quantum
communication

Quantum
computer / simulator

Quantum
computer 
(annealing)

Quantum software

SIP2

Basic Research 
Program

(CREST, PRESTO)

MIC

○ Japan has been leading 
basic research on quantum 
computing

○ Ministries lead R&D 
projects on quantum
technology
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Requirements for Centers, ex.:
① Have outstanding researchers and highly internationally competitive core technology
② Expected to exponentially develop industry and innovation
③ Expected to receive investment from companies and attract excellent human resources
④ Will gather human resources, technologies, and funding effectively and efficiently 4

Background
o Japan's Quantum Technology Innovation Strategy makes clear that the Quantum Technology Innovation Centers will be operated 

as hubs for integrated initiatives by industry, academia, and government, ranging from fundamental research to technology 
demonstration, intellectual property management, and human resources development. 

o In a policy speech (Jan. 20, 2020), Prime Minister Abe stated, "As for quantum technology, which will be the foundation for next-
generation encryption and more, we will move forward in developing innovation hubs that bring together top-class researchers 
and leading companies from within Japan and abroad.”

o Relevant ministries will sequentially start installations at the centers from FY 2020, and funding for the centers will be earmarked 
in the FY 2021 general budget.

Quantum Technology Innovation Centers

Quantum Technology 
Innovation Headquarters

(RIKEN)

Quantum inertia 
sensor / Optical 

lattice clocks

Quantum material
（NIMS※2）Quantum

secure network
（NICT※4）

Quantum life science 
(Quantum biotechnology) 

(QST※3)

Quantum software 
(incl. quantum AI)

Quantum devices
（AIST※5）

Quantum computer application
（The University of Tokyo and 
Business Alliance (IBM, etc.)）

Superconductive 
quantum computer

（RIKEN※1）

Each domain will establish its center in an integrated way under the Headquarters

Conceptual image 
of Centers

※1 Institute of Physical and Chemical Research
※2 National Institute for Materials Science
※3 National Institutes for Quantum and Radiological Science and Technology
※4 National Institute of Information and Communications Technology
※5 National Institute of Advanced Industrial Science and Technology 



Quantum Technology and Innovation Strategy
○Quantum technology is an important fundamental technology in terms of industry and security as well as 

brings drastic changes to economy and society.
○To achieve “quantum technology and innovation” as soon as possible, Japan promotes R&D, 

industrialization and commercialization of key technologies with taking own advantage

Quantum hubs International
collaboration

Priority areas

üEarly development of 
multilateral/bilateral cooperative 
frameworks

üSet “Key Technology Areas” & 
“Integrated Quantum Innovation 
Areas” for priority support and 
investments

üCreate “Technology Roadmap” & 
“Integrated Area Roadmap”

üEstablish  international  “Quantum 
technology Innovation Hubs”

üHub conducts basic research,  
demonstration and HR development

Five pillars towards an achievement of quantum technology and innovation

(1) Technology 
development

(2) International 
collaboration

(3) Industrialization
and innovation

(4) Intellectual property 
and international 
standardization

(5) Human resource 
development

Collaboration with US & EU in 
industrial and security issues

Acceleration of innovation

Ⅰ ⅢⅡ

e.g. Quantum software hub, 
Quantum inertial sensor hub e.g. Japan-US-EU multilateral 

symposium in Dec. 2019

üEnsure and strengthen security 
trade control

Tightly connected 
communication
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MEXT - Quantum Leap Flagship Program
The R&D program to achieve quantum leaps in economical and societal goals by
taking advantage of quantum technology.

Research Area：
1. Quantum IT (Computer, Simulator)

u Program Director : K. ITOH 
Ø Superconducting Quantum Computers : Prof. Y. NAKAMURA et.al.
Ø Quantum AI : Prof. K. FUJII et.al.

2. Quantum Metrology & Sensing
u Program Director: Y. ARAKAWA
Ø Solid Quantum Sensors : Prof. M. Hatano et.al.
Ø Quantum Life-Science : Ph.D. Y. Baba et.al. 

3. Next Generation Laser
u Program Director: A. ENDO
Ø Advanced Laser Innovation Centeors : Prof. T. Fujii et.al.

4. Development of Education Courses of Quantum Technologies
u Program Director: K. ITOH 
Ø Common Ｃｏｒｅ Program: Prof. K. Nemoto et.al.
Ø Creative Sub Program01 : Prof. M. Ohzeki et.al. 
Ø Creative Sub Program02 : Prof. A. Noguchi et.al. 

Prof. Yasunobu NAKAMURA
Photo by Nikkei-Science magazine

Period: FY 2018 – FY 2029
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Flagship01:
Superconducting Quantum Computers 

Quantum IT (Computer, Simulator)

5 -Year Plan
• 50-qubit system
• Cloud service for the 50-qubits system

10 -Year Plan
• 100-qubit system
• Cloud service for the 100-qubits system
• Applications for practical issues

After 2nd year
• 16-qubit system with T1 = 20 μs
•

Flagship02:
Quantum AI

5 -Year Plan
• Algorithm library for data classification, 

chemical reaction simulation and FinTech.
• Cloud service for Quantum circuit analysis 

tools and physics

10 -Year Plan
• Quantum AI for condensed matter physics and 

Machine Learning for practical issues
• Cloud service for quantum circuit design tools for NISQ
• Quantum Software on the actual device

• Software architecture for NISQ
• Applications taking advantage of a 

quantum supremacy

NEW
! Since Autumn. 2020 

Leader: 
Prof. K. Fujii

MEXT - Quantum Leap Flagship Program

• Analysis of practical issues 
using the quantum AI.
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and We also have other 6 R&D teams around 
the Flagship programs…

Leader: 
Prof. K. Nemoto

Leader: 
Prof. K. Ohmori

Leader: 
Prof. K. Toyota

Leader: 
Prof. K. Fijii Leader: 

Prof. N. Yamamoto

Leader: 
Ph.D. T. Mori

振動自由度
（フォノン）

光ビーム

イオン

内部
自由度

(a) (b)

(c) (d)

1
2

3
4

i

j1
2

3
4

0.0

1.0

Abs(Off-diagonal elements)Hamiltonian 

∝ 𝜅#

𝟎. 𝟗𝟑 −𝟎. 𝟕𝟗 −0.11 −0.03
−𝟎. 𝟕𝟗 𝟏. 𝟗𝟎 −𝟏 −0.11
−0.11 −𝟏 𝟏. 𝟗𝟎 −𝟎. 𝟕𝟗
−0.03 −0.11 −𝟎. 𝟕𝟗 𝟎. 𝟗𝟑

𝜅#
1.08/0
= 0.79𝜅#

2.08/0𝜅#
= 0.11𝜅

𝜅# ≡
67

89:;<=
: 

Hopping rate

(𝑑# ≡ 𝑧0# − 𝑧A#)1.08	𝑑#1.08	𝑑# 𝑑#

Time

1.08	𝑑#1.08	𝑑# 𝑑#

(e)

Quantum IT (Computer, Simulator)

MEXT - Quantum Leap Flagship Program
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Common Core Program:
Standard Program for a Higher Education Center

Development of Education Courses of Quantum Technologies
NEW
! Since Oct. 2020 

Development of high-quality Standards of Higher Education
in Quantum Technology

Creative Sub Program01 :
Development of Quantum Natives through Practical R6D

Building a practical group learning program to develop human
resources who can use quantum annealing and quantum machine
learning for computing in practice.

Creative Sub Program02 :
Online Course and Summer School Program for Quantum 
Technology Education

Development of an online course and summer school program to
improve the quality and stratification of talented researchers and engineers
involved in quantum experiments and technologies.

Leader: 
Prof. K. Nemoto

Leader: 
Prof. M. Ohzeki

Leader: 
Prof. A. Noguchi

MEXT - Quantum Leap Flagship Program
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Moonshot Goal #6

- Realization of a large-scale and 
multipurpose quantum computer that will 
revolutionize economy, industry and 
security, by 2050.

Realization of a fault-tolerant universal
quantum computer that will revolutionize
economy, industry, and security by 2050.

<Target of Moonshot Goal>
- Achievement of the large-scale integration

required for fault-tolerant universal quantum
computers*1 by around 2050.

- Development of a certain scale of NISQ
computer*2 and demonstration of the
effectiveness of quantum error correction by
2030.

A universal quantum computer 
that will dramatically 

revolutionize our society

(Reference: Future Visions to be achieved）Goal 6

*1 Fault-tolerant universal quantum computer is a quantum computer that realizes large-scale 
integration while guaranteeing on sufficiently high accuracy for various applications.
*2 NISQ(Noisy-Intermediate Scale Quantum) is a small to medium scale quantum computer that 
does not have a function to correct errors.
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Related Quantum Technology
• Quantum sensors • Quantum materials • Basic and Fundamental Research

Realization of fault-tolerant universal quantum computers
[Moonshot Goal candidate]

2050

Demonstration of distributed NISQ computer & 
Calculation of useful tasks under quantum error correction2040

Development of NISQ computers of a certain scale &
Effectiveness demonstration of quantum error correction2030

Network Hardware Software
Development of low overhead
quantum error correction code and
quantum algorithms, development of
measurement and control software.

Development of quantum memory,
establishment quantum interface
technology between photons and
quantum memory. Super-

conducting 
qubits

Trapped-
ions

Photons Silicon 
quantum 
dots

Stage gate
Identify suitable & feasible 

physical system.

System design and implementation of quantum
error correction, establishment of quantum bit and
gate platforms.

• Quantum error correction theory
• Middleware, compiler
• Algorithms, applications

• Photon source & detector
• Quantum memory
• Quantum interface technology

11



Classification of quantum computers

12

Ising machine (optimizer)Quantum computer 
(Gate-based, universal 

quantum computer

IBM
Google
Rigetti
Intel

Ion Q
Microsoft

etc.

Quantum annealer

D-Wave
NEC

Laser networks
（quasi quantum）

NII and NTT 

Quantum annealing algorithms performed 
by classical computers (simulation)

Hitachi CMOS annealer
Fujitsu digital annealer

Toshiba simulated branching algorithm
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http://research.ibm.com/ibm-q/

Keio Yagami Campus
Yokohama, Japan

(Keio Q Hub)

IBM Watson Research
(New York)

Program

IBM Q Network Hub @ Keio University

Cloud quantum 
computing

Results



Rapid advancements of processors available in IBM Q

14Q Experience

IBM Q  20 qubits system
”Tokyo”

IBM Q  20 qubits system
”Poughkeepsie”

IBM Q  20 qubits system
”System One”

Improvement of performance
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Keio Quantum Computing Center

17

Mitsubishi UFJ 
Financial Group

Mizuho Financial 
Group

JSR Corporation

Mitsubishi Chemical 
Corporation

IBM

Member Companies

MEXT, Japan (government)

Funding
Researchers

Funding

Applied Research

Basic Research

Collaboration

Scientific
Output Q-LEAP Program “Quantum Software”

PI: Prof. Naoki Yamamoto

Results
Know-hows

Keio Quantum Computing Center (KQCC)

IBM Q Hub

Sumitomo Mitsui Trust 
Bank

Sony Corporation

（Started May 2018, the first term ends on 
Dec, 2020, the second term starts on Jan. 2021）



研究現場 @ Keio University 
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Research topics at IBM Q Hub @ Keio

< Quantum Finance Team >

Verification by simulator & 
IBM Q machine

< Quantum Chemical Team >
Chemical reaction calculation 
of lithium air battery using 

IBM Q machine

< Quantum AI Team >

High accuracy data classification 
using IBM Q machine

< System（Quantum Software Implementation）Team >

Connecting an abstract quantum circuit to a real machine

Basics & Application



Quantum finance team︓
Fast Monte Carlo calculation

20

Keio + Mizuho + MUFG + IBM

Verification using simulator and IBM Q real machine

target value

・
・
・

・
・
・

(        )

(        )

(        )

Figure 1: Schematic picture of the proposed amplitude estimation algorithm
using the maximum likelihood estimation.

set of multidimensional random variables !h = (h0, h1, · · · , hM ) is independently
generated from the identical joint probability distribution p(!h; θa) ∼ L(!h; θa).

There are two caveats on this algorithm; (i) if only a single amplitude am-
plification circuit is used like the Grover search algorithm, i.e., the case M = 0
and m0 "= 0, the ML estimate θ̂a cannot be uniquely determined due to the
periodicity of L0(h0; θa), and (ii) if no amplification operator is applied, i.e.,
mk = 0 ∀k, then the ML estimate is unique but it does not have any quantum
advantages as shown later. Hence at the heart of our algorithm can be regarded
as the quantum circuit fusion technique that combines some quantum circuits to
get a unique decision making on the target value while some quantum advantage
is guaranteed.

3.2 Statistics; Cramér-Rao bound and Fisher information
The remaining to be determined in our algorithm is to design the sequences
{mk, Nk}, so that the resulting ML estimate θ̂a might have a distinct quantum
advantage over the classical one. Here we introduce some basic statistics method
to carry out this task and, based on that, give some specific choice of {mk, Nk}.

First, in general, the Fisher information I(a) is defined as

I(a) = E
[(

∂

∂a
lnL(x; a)

)2
]

(7)

where the expectation is taken over a random variable x by using a given prob-
ability distribution p(x; a) with an unknown parameter a . The importance of
the Fisher information can be clearly seen from the fact that any estimate â
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Figure 2: The relationships between the number of oracle calls and the estima-
tion error for several target probabilities a = sin2 ✓a.
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FIG. 1. The price of a stock in the Black-Scholes-Merton
model behaves stochastically as a geometric Brownian mo-
tion, changing each time step according to a log-normal dis-
tribution. In the above plot, five sample price evolutions of a
single stock are plotted as a function of time. The resultant
distribution is log-normally distributed, with mean (dashed
black line) and one standard deviation (dotted red lines) il-
lustrated. Pricing an option requires estimating the expected
value of a payo↵ function on the stock at various times. The
parameters are: initial price S0 = 3, drift ↵ = 0.1, and volatil-
ity � = 0.25.

II. BLACK-SCHOLES-MERTON OPTION
PRICING

The Black-Scholes-Merton (BSM) model [4, 5] con-
siders the pricing of financial derivatives (‘options’).
The original model assumes a single benchmark asset
(‘stock’), whose price is stochastically driven by a Brow-
nian motion, see Fig 1. In addition, it assumes a risk
free investment into a bank account (‘bond’). We follow
closely the discussion in the literature [2] in the following.

Definition 1. A Brownian motion Wt is a stochastic
process characterized by following attributes:

1. W0 = 0;

2. Wt is continuous;

3. Wt has independent increments;

4. Wt � Ws ⇠ N (0, t � s) for t > s.

N (µ,�2) is the normal distribution with mean µ and
variance �2. Point 3 means that the random variable
Wt � Ws for t > s is independent of any previous time
random variable Wu, u < s. The probability measure un-
der which Wt is a Brownian motion shall be denoted by
.

The next step is to introduce a model for the market.

Definition 2 (Black-Scholes-Merton model). The Black-
Scholes-Merton model consists of two assets, one risky
(the stock), the other one risk-free (the bond). The risky

asset is defined by the stochastic di↵erential equation for
the price dynamics, given by

dSt = St↵dt + St�dWt, (1)

where ↵ is the drift, � the volatility and dWt is a Brow-
nian increment. The initial condition is S0. In addition,
the risk-free asset dynamics is given by

dBt = Btrdt, (2)

where r is the risk-free rate (market rate). Set B0 = 1.
This model assumes that all parameters are constant,
both assets can be bought or sold continuously and in
unlimited and fractional quantities without transaction
costs. Short selling is allowed, and the stock pays no
dividends.

Using Ito’s lemma and the fact that dWt contributes an
additional term in first order (due do its quadratic varia-
tion being proportional to dt), the risky asset stochastic
equation can be solved as

St = S0e
�Wt+(↵��2/2)t, (3)

see Appendix A. Figure 1 shows sample evolutions of St.
The risk-free asset is solved easily as

Bt = ert. (4)

This risk-free asset also is used for ‘discounting’, i.e. de-
termining the present value of a future amount of money.
Let the task be to price an option. One of the simplest
options is the European call option. The European call
option gives the owner of the option the right to buy the
stock at time T for a pre-agreed price K.

Definition 3 (European call option). The European call
option payo↵ is defined as

f(ST ) = max{0, ST � K}, (5)

where K is the strike price and T the maturity date.

The task of pricing is to evaluate at present time t = 0
the expectation value of the option f(ST ) on the stock
on the maturity date. The major tenet of risk-neutral
derivative pricing is that the pricing is performed under a
probability measure that shall not allow for arbitrage [3].
Simply put, arbitrage is a portfolio that has, at present,
an expected future value that is greater than the cur-
rent price of that portfolio. In the Black-Scholes-Merton
framework, the stock price has a drift ↵ under the
measure. Any ↵ 6= r allows for arbitrage under the mea-
sure . When ↵ > r, one can make a profit above the
market rate r by investing in the stock, and when ↵ < r
one can make a profit by short selling the stock. Pricing
of derivatives is performed under a probability measure
where the drift of the stock price is exactly the market
rate r. This pricing measure is denoted by in contrast
to the original measure .



Amplitude estimation algorithm 
for quantum square speed-up of Monte Carlo

Previous method

This work
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input …… …
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Parallel processing of 
quantum computing steps (no 

phase estimation needed

Grover and
phase estimation

Amplitude Estimation without Phase Estimation, Quantum Information Processing 19, 75 (2020)
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Figure 1: Schematic picture of the proposed amplitude estimation algorithm
using the maximum likelihood estimation.

set of multidimensional random variables !h = (h0, h1, · · · , hM ) is independently
generated from the identical joint probability distribution p(!h; θa) ∼ L(!h; θa).

There are two caveats on this algorithm; (i) if only a single amplitude am-
plification circuit is used like the Grover search algorithm, i.e., the case M = 0
and m0 "= 0, the ML estimate θ̂a cannot be uniquely determined due to the
periodicity of L0(h0; θa), and (ii) if no amplification operator is applied, i.e.,
mk = 0 ∀k, then the ML estimate is unique but it does not have any quantum
advantages as shown later. Hence at the heart of our algorithm can be regarded
as the quantum circuit fusion technique that combines some quantum circuits to
get a unique decision making on the target value while some quantum advantage
is guaranteed.

3.2 Statistics; Cramér-Rao bound and Fisher information
The remaining to be determined in our algorithm is to design the sequences
{mk, Nk}, so that the resulting ML estimate θ̂a might have a distinct quantum
advantage over the classical one. Here we introduce some basic statistics method
to carry out this task and, based on that, give some specific choice of {mk, Nk}.

First, in general, the Fisher information I(a) is defined as

I(a) = E
[(

∂

∂a
lnL(x; a)

)2
]

(7)

where the expectation is taken over a random variable x by using a given prob-
ability distribution p(x; a) with an unknown parameter a . The importance of
the Fisher information can be clearly seen from the fact that any estimate â
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Calculations by IBM Q
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of optimization is the quantum approximate optimiza-
tion algorithm (QAOA),46 which also uses a specially
constructed variational entangler circuit to attempt to
approximate diagonalization of a classical Ising Hamil-
tonian. A large body of work has been devoted to the
practical utilization of QAOA and variants to provide
direct optimization of practically-relevant binary opti-
mization problems.47–57 VQE and QAOA often produce
accurate results with short quantum circuits relative to
more-traditional quantum algorithms, but the ad hoc def-
initions of the variational entangler circuits remain a sig-
nificant barrier to analysis and routine black-box deploy-
ment of these methods. Moreover, the di�cult nonlinear
optimization procedure of the variational circuit param-
eters has proven to be a di�cult practical aspect of vari-
ational quantum algorithms, with such conceptual night-
mares encountered as “barren plateaus” of vast regions of
the parameter space that are far from optimal and have
vanishing gradient information.58

In the present work, we develop an algorithm we re-
fer to as “quantum filter diagonalization” (QFD) that
conceptually lives somewhere between VQE and PEA.
The algorithm starts from a set of easily classically pre-
pared approximate reference states for the targeted eigen-
vectors, and then builds a variational ansatz of a lin-
ear combination of time-advanced and time-delayed ref-
erence states. The preparation of time-advanced and
time-delayed reference states are conceptually prepared
by application of the Trotterized time propagation opera-
tor on quantum circuit hardware. Key to the algorithm is
the evaluation of both Hamiltonian and metric transition
expectation values over di↵erent pairs of time-advanced
and time-delayed reference states: a single-ancilla vari-
ant of the quantum swap test is found to be su�cient
for this purpose. Finally, the algorithm concludes with
a classical diagonalization of the generalized eigenvalue
problem involving the quantum Hamiltonian and metric
matrix elements evaluated over time-advanced and time-
delayed reference states. The resultant classical eigen-
values are variational estimates of the eigenvalues of the
full Hamiltonian, while the classical eigenvectors provide
a recipe for the classical mixing of time-advanced and
time-delayed reference states to reconstruct the approxi-
mate eigenvectors in the full space. Post-facto evaluation
of matrix elements in the quantum circuit hardware then
enables the extraction of transition property expectation
values over other sparse Pauli-basis Hermitian operators.

The use of a grid of time-propagated states as a basis
for quantum eigendecomposition algorithms is certainly
not new - in fact, it can be argued that the original phase
estimation algorithm was founded on just such a basis.
Some time ago, Somma et al proposed an algorithm59

based on taking the discrete Fourier transform of observ-
ables evaluated over a regularly-spaced time propagation
grid, but this method only works well when there are
a small number of distinct and well-separated eigenval-
ues. More recently, O’Brien et al published an inter-
esting time-grid method60 based on a Prony-type fitting

of the relative time-shift overlap matrix. Kyriienko has
also published a highly compelling “quantum inverse iter-
ation” method61 that uses a time propagation grid with
a predetermined quadrature recipe to approximate the
operator (Ĥ � �)�↵ where � is a guess for the target
eigenvalue and ↵ � 1. When this operator is applied
to a guess eigenstate, the component of the eigenvector
nearest to � is significantly magnified, improving the so-
lution. Very recently, as we were finalizing the numerical
demonstrations for this manuscript, Somma published
yet another interesting time grid method62 that uses a
Fourier series for a smooth cuto↵ function to extinguish
high-lying eigenvectors. The novelty of our approach is
primarily in the explicit use of the time-propagated states
as a variational basis ansatz for the full eigenstates. This
necessitates the evaluation of the variational basis sub-
space Hamiltonian and metric matrices (evaluated in the
proposed method with quantum circuits by using an ex-
tension of the swap test) followed by a classical general-
ized eigensolution. We also point out that our “quantum
filter diagonalization” approach is heavily inspired by the
classical filter diagonalization approach,63–68 which uses
a basis of either time-propagated reference states or a
Chebyshev expansion of (Ĥ � �)�↵ acting on reference
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flavor of quantum filter diagonalization developed here,
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tended version of the Kyriienko quantum inverse itera-
tion method. Notably, in classical filter diagonalization
approaches, the same final classical generalized eigen-
problem arises as we encounter below. The key di↵erence
between classical and quantum filter diagonalization is
that the Hamiltonian and metric matrix elements must
be approximated by sparsity considerations or Monte
Carlo integration in the classical approach, while we in-
stead use a quantum circuit to e�ciently evaluate the
matrix elements in the quantum approach. It also worth
pointing out that our QFD method was heavily inspired
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that the PEA portions of a Grover-type amplitude esti-
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II. THEORY

A. Problem Statement

Consider a system of N qubits {A}. We are given a
Hamiltonian operator in sparse Pauli form, e.g.,

Ĥ ⌘
X

A

ZAẐA + XAX̂A (1)

+
X

A>B

ZZABẐA ⌦ ẐB + ZXABẐA ⌦ X̂B
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We develop a quantum filter diagonalization method (QFD) that lies somewhere between the
variational quantum eigensolver (VQE) and the phase estimation algorithm (PEA) in terms of re-
quired quantum circuit resources and conceptual simplicity. QFD uses a set of of time-propagated
guess states as a variational basis for approximate diagonalization of a sparse Pauli Hamiltonian.
The variational coe�cients of the basis functions are determined by the Rayleigh-Ritz procedure
by classically solving a generalized eigenvalue problem in the space of time-propagated guess states.
The matrix elements of the subspace Hamiltonian and subspace metric matrix are each determined
in quantum circuits by a one-ancilla extended swap test, i.e., statistical convergence of a one-ancilla
PEA circuit. These matrix elements can be determined by many parallel quantum circuit evalu-
ations, and the final Ritz estimates for the eigenvectors can conceptually be prepared as a linear
combination over separate quantum state preparation circuits. The QFD method naturally provides
for the computation of ground-state, excited-state, and transition expectation values. We numeri-
cally demonstrate the potential of the method by classical simulations of the QFD algorithm for an
N = 8 octamer of BChl-a chromophores represented by an 8-qubit ab initio exciton model (AIEM)
Hamiltonian. Using only a handful of time-displacement points and a coarse, variational Trotter
expansion of the time propagation operators, the QFD method recovers an accurate prediction of
the absorption spectrum.

I. INTRODUCTION

The e↵ective extraction of a few low-lying eigenpairs
and corresponding transition operator expectation values
from a large Hermitian matrix specified in sparse Pauli
form is a ubiquitous task in mathematical physics and
optimization. In the former consideration, the opera-
tor to be diagonalized is often a representation of the
Hamiltonian for an interesting quantum system, and the
diagonalization amounts to solving the time-independent
Schrödinger equation within this representation. In the
latter consideration, the operator to be diagonalized is
a classical Ising Hamiltonian that is isomorphic to the
cost matrix of a binary optimization problem. Here, the
matrix is already diagonal in the Ẑ basis, and the eigen-
decomposition amounts to an exhaustive search for low-
lying diagonal matrix elements.
Numerous classical approaches have been developed

to approximately solve this problem, but all require ex-
tensive validation e↵orts to ensure su�cient accuracy
for each new class of physical problem encountered. In
particular, most such approximations rely on perceived
spatial-, rank-, or tensor-sparsity structure in the phys-
ical problems at hand, in an attempt to ameliorate the
exponential naive classical cost of representing even a
single eigenpair directly. E.g., in the diagonalization
of quantum Hamiltonians of electronic structure theory,
a myriad of approximate theories ranging from density
functional theory,1–4 coupled cluster theory,5–10, selected
configuration interaction theory,11–17 and density ma-
trix renormalization group theory18,19 has been devel-
oped - each performs remarkably well in certain regimes
of the problem space, and fails qualitatively in others.
A promising alternative approach is to use a univer-

sal quantum computer to aid in part of the computa-
tion. As increasingly powerful quantum circuit hard-
ware becomes available, this approach will remove for-
mal tractability barriers regarding the storage and ma-
nipulation of Hilbert space quantities, but will surely
be fraught with conceptual challenges involving the de-
sign of e�cient hybrid quantum/classical algorithms that
will have only limited few-qubit quantum circuit gates
and that will necessarily output only quantum observ-
able measurements. Numerous impressive strides have
been made over the past few decades in developing ef-
ficient algorithms along these lines. A foundational al-
gorithm for quantum eigendecomposition is the phase
estimation algorithm (PEA).20–27 Unfortunately, phase
estimation requires nested control of Trotterized time
propagation operations by a large array of ancilla qubits,
which, when expanded to the standard library of 1-
and 2-qubit gates, yields extremely long circuits which
will not be tractable in the near term. Motivated
by the limited gate depths and low fidelity of extant
noisy intermediate-scale quantum (NISQ) devices,28 sev-
eral compelling “variational quantum algorithms” have
been developed over the past few years that feature
vastly lowered gate requirements (and usually no an-
cilla qubits) at the cost of designing and optimizing a
heuristic variational entangler circuit. An archetypical
method of this type is the variational quantum eigen-
solver (VQE),29 which has been widely deployed in sim-
ulators and in several types of quantum hardware to tar-
get the lowest eigenstates of the Hamiltonian for elec-
trons in molecules and other physical systems.29–36 VQE
has seen numerous recent extensions to e�ciently treat
excited states,29,37–42 transition properties,42 and gradi-
ent properties.43–45 A doppelgänger of VQE in the area
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Quantum Approximate Counting, Simplified

Scott Aaronson⇤ Patrick Rall†

Abstract

In 1998, Brassard, Høyer, Mosca, and Tapp (BHMT) gave a quantum algorithm for ap-

proximate counting. Given a list of N items, K of them marked, their algorithm estimates

K to within relative error " by making only O

⇣
1
"

q
N
K

⌘
queries. Although this speedup is of

“Grover” type, the BHMT algorithm has the curious feature of relying on the Quantum Fourier
Transform (QFT), more commonly associated with Shor’s algorithm. Is this necessary? This
paper presents a simplified algorithm, which we prove achieves the same query complexity using
Grover iterations only. We also generalize this to a QFT-free algorithm for amplitude estima-
tion. Related approaches to approximate counting were sketched previously by Grover, Abrams
and Williams, Suzuki et al., and Wie (the latter two as we were writing this paper), but in all
cases without rigorous analysis.

1 Introduction

Approximate counting is one of the most fundamental problems in computer science. Given a list
of N items, of which K > 0 are marked, the problem is to estimate K to within a multiplicative
error of ". One wants to do this with the minimum number of queries, where a query simply
returns whether a given item i 2 [N ] is marked.

Two decades ago, Brassard, Høyer, Mosca, and Tapp [BHMT02] gave a celebrated quantum

algorithm for approximate counting, which uses O

✓
1
"

q
N
K

◆
queries. This is tight, matching a

lower bound of Nayak and Wu [NW99], and is a quadratic speedup over the best possible classical
query complexity of ⇥

�
1
"2

N
K

�
. This is the same type of quantum speedup as provided by the

famous Grover’s algorithm [Gro96], for finding a marked item in a list of size N , and indeed the
BHMT algorithm builds on Grover’s algorithm.

Curiously, though, the BHMT algorithm was not just a simple extension of Grover’s algorithm
to a slightly more general problem (approximate counting rather than search). Instead, BHMT
made essential use of the Quantum Fourier Transform (QFT): a component that appears nowhere
in Grover’s algorithm, and that’s more commonly associated with the exponential speedup of Shor’s
factoring algorithm [Sho97]. Indeed, BHMT presented their approximate counting algorithm as a
sort of hybrid of Grover’s and Shor’s algorithms.

⇤
University of Texas at Austin. Email: aaronson@cs.utexas.edu. Supported by a Vannevar Bush Fellowship

from the US Department of Defense, a Simons Investigator Award, and the Simons “It from Qubit” collaboration.
†
University of Texas at Austin. Email: patrickjrall@gmail.com. Supported by Aaronson’s Vannevar Bush

Faculty Fellowship from the US Department of Defense.
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This raises an obvious question: is the QFT in any sense necessary for the quadratic quantum
speedup for approximate counting? Or can we obtain that “Grover-like speedup” by purely Grover-
like means?

In this paper we settle that question, by giving the first rigorous quantum approximate counting
algorithm that’s based entirely on Grover iterations, with no QFTs or other quantum-mechanical in-

gredients. Matching [BHMT02], the query complexity of our algorithm is the optimal O

✓
1
"

q
N
K

◆
,

while the computational complexity exceeds the query complexity by only an O(logN) multi-
plicative factor. Because of its extreme simplicity, our algorithm might be more amenable than
[BHMT02] or other alternatives to implementing on near-term quantum computers. The analysis
of our algorithm is also simple, employing standard classical techniques akin to estimating the bias
of a coin via many coin tosses1.

An approach broadly similar to ours was outlined by Grover [Gro98] in 1997, with fuller discus-
sion by Abrams and Williams [AW99] in 1999. The latter authors sketched how to estimate the
integral of a function over some domain, to additive error ", using O(1/") quantum queries. Cru-
cially, however, neither Grover nor Abrams and Williams prove the correctness of their approach—
among other issues, they assume that a probability can be estimated to a desired precision without
any chance of failure. Also, it is not clear how to adapt their approaches to the broader problem
of amplitude estimation.

As we were writing this paper, two other quantum algorithms for approximate counting were
announced that avoid the use of QFTs. Surprisingly, both algorithms di↵er significantly from ours.

In April, Suzuki et al. [SUR+19] gave an O

✓
1
"

q
N
K

◆
-query quantum algorithm that first collects

samples from various Grover iterations, and then extracts an approximate value of K via maximum
likelihood estimation. Finding the maximum of the likelihood function, according to Suzuki et
al., incurs a log 1

" computational overhead. More importantly, even if we focus only on query
complexity, Suzuki et al. do not prove their algorithm correct. Their analysis gives only a lower

bound on the error, rather than an upper bound, so is supplemented by numerical experiments.
By contrast, our analysis is fully rigorous. On the other hand, the Suzuki et al. algorithm has the
interesting feature that its invocations of Grover’s algorithm are nonadaptive (i.e., can be performed
simultaneously), whereas our algorithm requires adaptivity.

In July, Wie [Wie19] sketched another O

✓
1
"

q
N
K

◆
-query, QFT-free quantum approximate

counting algorithm. Wie’s algorithm is based on Hadamard tests, which require the more ex-
pensive “controlled-Grover” operation rather than just bare Grover iterations. Replacing the QFT
with Hadamard tests is called “iterative phase estimation,” and was suggested by Kitaev [Kit96].
Wie modifies iterative phase estimation in order to apply it to the BHMT algorithm. Unfortu-
nately, and like the previously mentioned authors, Wie gives no proof of correctness. Indeed,
given a subroutine that accepts with probability p, Wie (much like Abrams and Williams [AW99])
simply assumes that p can be extracted to the requisite precision. There is no analysis of the
overhead incurred in dealing with inevitable errors. Again, in place of analysis there are numerical
experiments.

One reason why approximate counting is of interest in quantum computation is that it gener-

1
Indeed, [BHMT02] also requires such classical techniques, since the QFT alone fails to reliably extract the desired

information from the Grover operator. By removing the QFT, we show that Grover and estimation techniques alone

can do the whole job. This gives a clear way to understand in what sense our algorithm is “simpler.”
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Supplementary information on the VQE experiment

The VQE problem:
The goal of this problem is to obtain the ground energy of a given Hamiltonian H by minimizing the mean

energy E(θ) = 〈ψ(θ)|H|ψ(θ)〉, where |ψ(θ)〉 is a parameterized ansatz state |ψ(θ)〉 = U(θ)|ψ0〉 with U(θ) the
unitary operator of the quantum circuit and |ψ0〉 the initial state; the parameter θ is updated so as to decrease
E(θ) toward the ground energy, typically by the ordinary gradient method

θ(k+1) = θ(k) − η
∂E(θ)

∂θ

∣∣∣
θ=θ(k)

,

with η the learning coefficient. In this work the following two-qubits unitary operator is chosen:

U(θ) =
[
Ry(θ3)⊗Ry(θ4)

]
Uc−Z

[
Ry(θ1)⊗Ry(θ2)

]
,

where Ry(θ) = e−iθY/2 is the y-rotating single-qubit gate and Uc−Z = |0〉〈0|⊗ I + |1〉〈1|⊗Z is the controlled-Z
gate. Also the initial state is |ψ0〉 = |1〉|0〉; the parameters are initialized to θ(0) = (θ1, θ2, θ3, θ4) = (0, 0, 0, 0),
and thus the ansatz state of the VQE procedure begins with |θ(0)〉 = |1〉|0〉.

Hamiltonian:
In this work the following two-qubits Hamiltonians are studied. First the reactant Hamiltonian is given by

Hreac = a0I ⊗ I + a1Z ⊗ Z + a2X ⊗X + b(I ⊗ Z − Z ⊗ I) + c(I ⊗X +X ⊗ I − Z ⊗X +X ⊗ Z), (1)

where a0 = 0.0568, a1 = −0.0374, a2 = 0.1351, b = 0.0471, and c = 0.0708. The eigenvalues of Hreac are

(ε3, ε2, ε1, ε0) = (0.398602, 0.060722,−0.115761,−0.116459), (2)

which in the HF unit correspond to

(ε3, ε2, ε1, ε0) = (−313.667384,−314.005258,−314.181743,−314.182441).

In this document we use the expression (2). The corresponding eigenstates are respectively given by

|ES3〉 =





0.434
0.253
0.748
0.434



 , |ES2〉 =





0.466
−0.686
−0.308
0.466



 , |ES1〉 =





−0.707
0.000
0.000
0.707



 , |GS〉 =





0.307
0.682
−0.588
0.307



 .

Note that |ESj〉 and |GS〉 represent the jth excited state and the ground state, respectively. Because this ansatz
state |ψ(θ)〉 can represent any vector in R4 by appropriately choosing θ, there exists an optimal parameter θ∗

such that |ψ(θ∗)〉 = |GS〉 and E(θ∗) = 〈ψ(θ∗)|Hreac|ψ(θ∗)〉 = ε0 = −0.116459.
Next the TS Hamiltonian is given by

HTS = a′0I ⊗ I + a′1Z ⊗ Z + a′2X ⊗X + b′(I ⊗ Z − Z ⊗ I), (3)

where a′0 = 0.26151, a′1 = −0.00418, a′2 = 0.18530, and b′ = 0.13284. The eigenvalues are
(0.442609, 0.072050, 0.589592,−0.058224). Finally the product Hamiltonian has the same form as Eq. (3) yet
with the following different coefficients: a′0 = 0.27451, a′1 = −0.0414, a′2 = 0.19112, and b′ = 0.13933. The
eigenvalues are (0.461490, 0.079244, 0.616553,−0.059246).

The critical difference of the above three Hamiltonians is in the energy gap between the ground state and the
first excited state:

δreac = 0.000698, δTS = 0.130274, δprod = 0.138490.

That is, only for the reactant Hamiltonian, the 1st excited energy ε1 and the ground energy ε0 are very
close, which, as will be seen later, makes the corresponding VQE problem difficult. Hence in what follows we
particularly describe only the case of reactant Hamiltonian.

Variational Quantum Eigensolver, VQE

Ansatz state: 
Minimize the energy value

by updating the parameter
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and thus the ansatz state of the VQE procedure begins with |θ(0)〉 = |1〉|0〉.

Hamiltonian:
In this work the following two-qubits Hamiltonians are studied. First the reactant Hamiltonian is given by

Hreac = a0I ⊗ I + a1Z ⊗ Z + a2X ⊗X + b(I ⊗ Z − Z ⊗ I) + c(I ⊗X +X ⊗ I − Z ⊗X +X ⊗ Z), (1)

where a0 = 0.0568, a1 = −0.0374, a2 = 0.1351, b = 0.0471, and c = 0.0708. The eigenvalues of Hreac are

(ε3, ε2, ε1, ε0) = (0.398602, 0.060722,−0.115761,−0.116459), (2)

which in the HF unit correspond to

(ε3, ε2, ε1, ε0) = (−313.667384,−314.005258,−314.181743,−314.182441).

In this document we use the expression (2). The corresponding eigenstates are respectively given by

|ES3〉 =





0.434
0.253
0.748
0.434



 , |ES2〉 =





0.466
−0.686
−0.308
0.466



 , |ES1〉 =





−0.707
0.000
0.000
0.707



 , |GS〉 =





0.307
0.682
−0.588
0.307



 .

Note that |ESj〉 and |GS〉 represent the jth excited state and the ground state, respectively. Because this ansatz
state |ψ(θ)〉 can represent any vector in R4 by appropriately choosing θ, there exists an optimal parameter θ∗

such that |ψ(θ∗)〉 = |GS〉 and E(θ∗) = 〈ψ(θ∗)|Hreac|ψ(θ∗)〉 = ε0 = −0.116459.
Next the TS Hamiltonian is given by

HTS = a′0I ⊗ I + a′1Z ⊗ Z + a′2X ⊗X + b′(I ⊗ Z − Z ⊗ I), (3)

where a′0 = 0.26151, a′1 = −0.00418, a′2 = 0.18530, and b′ = 0.13284. The eigenvalues are
(0.442609, 0.072050, 0.589592,−0.058224). Finally the product Hamiltonian has the same form as Eq. (3) yet
with the following different coefficients: a′0 = 0.27451, a′1 = −0.0414, a′2 = 0.19112, and b′ = 0.13933. The
eigenvalues are (0.461490, 0.079244, 0.616553,−0.059246).

The critical difference of the above three Hamiltonians is in the energy gap between the ground state and the
first excited state:

δreac = 0.000698, δTS = 0.130274, δprod = 0.138490.

That is, only for the reactant Hamiltonian, the 1st excited energy ε1 and the ground energy ε0 are very
close, which, as will be seen later, makes the corresponding VQE problem difficult. Hence in what follows we
particularly describe only the case of reactant Hamiltonian.
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Modeling by 2 qubits for each of three molecule Hamiltonian

Computational Investigations of the Lithium Superoxide Dimer Rearrangement on 
Noisy Quantum Devices, Q. Gao, H. Nakamura, T. P. Gujarati, G. O. Jones, J. E. Rice, 
S. P. Wood, M. Pistoia, J. M. Garcia, and N. Yamamoto, arXiv:1906.10675.
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which in the HF unit correspond to

(ε3, ε2, ε1, ε0) = (−313.667384,−314.005258,−314.181743,−314.182441).

In this document we use the expression (2). The corresponding eigenstates are respectively given by
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Note that |ESj〉 and |GS〉 represent the jth excited state and the ground state, respectively. Because this ansatz
state |ψ(θ)〉 can represent any vector in R4 by appropriately choosing θ, there exists an optimal parameter θ∗

such that |ψ(θ∗)〉 = |GS〉 and E(θ∗) = 〈ψ(θ∗)|Hreac|ψ(θ∗)〉 = ε0 = −0.116459.
Next the TS Hamiltonian is given by

HTS = a′0I ⊗ I + a′1Z ⊗ Z + a′2X ⊗X + b′(I ⊗ Z − Z ⊗ I), (3)

where a′0 = 0.26151, a′1 = −0.00418, a′2 = 0.18530, and b′ = 0.13284. The eigenvalues are
(0.442609, 0.072050, 0.589592,−0.058224). Finally the product Hamiltonian has the same form as Eq. (3) yet
with the following different coefficients: a′0 = 0.27451, a′1 = −0.0414, a′2 = 0.19112, and b′ = 0.13933. The
eigenvalues are (0.461490, 0.079244, 0.616553,−0.059246).

The critical difference of the above three Hamiltonians is in the energy gap between the ground state and the
first excited state:

δreac = 0.000698, δTS = 0.130274, δprod = 0.138490.

That is, only for the reactant Hamiltonian, the 1st excited energy ε1 and the ground energy ε0 are very
close, which, as will be seen later, makes the corresponding VQE problem difficult. Hence in what follows we
particularly describe only the case of reactant Hamiltonian.
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not be directly applied. However, because FC depends
on H whereas F does not, the natural gradient for VQE
with the classical Fisher information might be effectively
applied to a complicated Hamiltonian.

IV. EXAMPLE 2: H2 MOLECULE

The second case-study is on the problem of finding the
ground state of the H2 molecule; the Hamiltonian can be
reduced and modeled using two qubits as [4]

H = α(σz ⊗ I + I ⊗ σz) + βσx ⊗ σx, (7)

where α = 0.4 and β = 0.2. This has four eigenvalues

h1 =
√
4α2 + β2, h2 = β, h3 = −β, h4 = −

√
4α2 + β2,

and particularly the minimum eigenvector, i.e., the
ground state, is given by

|φmin〉 ∝ −β|0, 0〉+ (2α+
√
4α2 + β2)|1, 1〉. (8)

The ansatz is taken as

|φ(θ)〉
= (Ry(2θ3)⊗Ry(2θ4))Uent(Ry(2θ1)⊗Ry(2θ2))|0〉 ⊗ |0〉,

where Uent = |0〉〈0|⊗ I + |1〉〈1|⊗ σx denotes the CNOT
gate and Ry(θ) denotes the single-qubit rotation operator
defined by

Ry(θ) = e−iθσy/2 =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
.

This is a typical hardware-efficient ansatz, illustrated in
Fig. 4.

}
FIG. 4: The hardware-efficient ansatz with 2 qubits.

The Fubini-Study metric (3) is calculated as

F =





1 0 sin(2θ2) 0
0 1 0 cos(2θ1)

sin(2θ2) 0 1 0
0 cos(2θ1) 0 1



 .

Note that |φ(θ)〉 is a real vector and thus 〈∂iφ|φ〉 = 0
for all i. Hence F = A; that is, ITE is equivalent to the
natural gradient. Now the determinant of F is given by

det(F ) = sin2(2θ1) cos
2(2θ2).

The parameters satisfying det(F ) = 0 constitute the set
of singular points, which has a clear physical meaning

as follows. In general, the entanglement of the bipartite
state |Ψ〉 can be quantified by the entanglement entropy

S(|Ψ〉) = −Tr(ρ1 log ρ1), ρ1 = Tr2(|Ψ〉〈Ψ|).

In our case, it is given by

S(|φ〉) = −λ logλ− (1− λ) log(1− λ),

where

λ =
1

2
+

1

2

√
1− det(F ).

Hence, S(|φ〉) = 0 if and only if det(F ) = 0. That is,
the set of singular points represents the set of all sep-
arable states. This makes sense, because if the state
Uent(Ry(2θ1) ⊗ Ry(2θ2))|0〉 ⊗ |0〉 is separable, then the
local operation Ry(2θ3)⊗Ry(2θ4) can never entangle this
state for any parameter choice.

FIG. 5: (Top) Trajectories of the parameters (θ1, θ2, θ3, θ4)
for the ordinary and natural gradients, with the initial point
(θ1, θ2, θ3, θ4) = (−0.2,−0.2, 0, 0). (Bottom) Energy of the H2

molecule (α = 0.4, β = 0.2) versus the VQE iteration steps.

Let us now see the results of numerical simulation.
Again the learning coefficient is fixed to ηk = 0.05 for
all k. First, Fig. 5 shows the trajectory of the param-
eter dynamics (Top) and the change of f(θ) over the
VQE iteration step, for the case where the initial point
is (θ1, θ2, θ3, θ4) = (−0.2,−0.2, 0, 0). As shown in the fig-
ure, the natural gradient achieves the faster convergence
to the minimum energy h4 ≈ −0.82 than the ordinary
gradient. This faster convergence might be explained as
follows. If the initial value of θ3 and θ4 are chosen as
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The VQE problem:
The goal of this problem is to obtain the ground energy of a given Hamiltonian H by minimizing the mean

energy E(θ) = 〈ψ(θ)|H|ψ(θ)〉, where |ψ(θ)〉 is a parameterized ansatz state |ψ(θ)〉 = U(θ)|ψ0〉 with U(θ) the
unitary operator of the quantum circuit and |ψ0〉 the initial state; the parameter θ is updated so as to decrease
E(θ) toward the ground energy, typically by the ordinary gradient method

θ(k+1) = θ(k) − η
∂E(θ)
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θ=θ(k)

,

with η the learning coefficient. In this work the following two-qubits unitary operator is chosen:

U(θ) =
[
Ry(θ3)⊗Ry(θ4)

]
Uc−Z

[
Ry(θ1)⊗Ry(θ2)

]
,

where Ry(θ) = e−iθY/2 is the y-rotating single-qubit gate and Uc−Z = |0〉〈0|⊗ I + |1〉〈1|⊗Z is the controlled-Z
gate. Also the initial state is |ψ0〉 = |1〉|0〉; the parameters are initialized to θ(0) = (θ1, θ2, θ3, θ4) = (0, 0, 0, 0),
and thus the ansatz state of the VQE procedure begins with |θ(0)〉 = |1〉|0〉.

Hamiltonian:
In this work the following two-qubits Hamiltonians are studied. First the reactant Hamiltonian is given by

Hreac = a0I ⊗ I + a1Z ⊗ Z + a2X ⊗X + b(I ⊗ Z − Z ⊗ I) + c(I ⊗X +X ⊗ I − Z ⊗X +X ⊗ Z), (1)

where a0 = 0.0568, a1 = −0.0374, a2 = 0.1351, b = 0.0471, and c = 0.0708. The eigenvalues of Hreac are

(ε3, ε2, ε1, ε0) = (0.398602, 0.060722,−0.115761,−0.116459), (2)

which in the HF unit correspond to

(ε3, ε2, ε1, ε0) = (−313.667384,−314.005258,−314.181743,−314.182441).

In this document we use the expression (2). The corresponding eigenstates are respectively given by

|ES3〉 =





0.434
0.253
0.748
0.434



 , |ES2〉 =





0.466
−0.686
−0.308
0.466



 , |ES1〉 =





−0.707
0.000
0.000
0.707



 , |GS〉 =





0.307
0.682
−0.588
0.307



 .

Note that |ESj〉 and |GS〉 represent the jth excited state and the ground state, respectively. Because this ansatz
state |ψ(θ)〉 can represent any vector in R4 by appropriately choosing θ, there exists an optimal parameter θ∗

such that |ψ(θ∗)〉 = |GS〉 and E(θ∗) = 〈ψ(θ∗)|Hreac|ψ(θ∗)〉 = ε0 = −0.116459.
Next the TS Hamiltonian is given by

HTS = a′0I ⊗ I + a′1Z ⊗ Z + a′2X ⊗X + b′(I ⊗ Z − Z ⊗ I), (3)

where a′0 = 0.26151, a′1 = −0.00418, a′2 = 0.18530, and b′ = 0.13284. The eigenvalues are
(0.442609, 0.072050, 0.589592,−0.058224). Finally the product Hamiltonian has the same form as Eq. (3) yet
with the following different coefficients: a′0 = 0.27451, a′1 = −0.0414, a′2 = 0.19112, and b′ = 0.13933. The
eigenvalues are (0.461490, 0.079244, 0.616553,−0.059246).

The critical difference of the above three Hamiltonians is in the energy gap between the ground state and the
first excited state:

δreac = 0.000698, δTS = 0.130274, δprod = 0.138490.

That is, only for the reactant Hamiltonian, the 1st excited energy ε1 and the ground energy ε0 are very
close, which, as will be seen later, makes the corresponding VQE problem difficult. Hence in what follows we
particularly describe only the case of reactant Hamiltonian.
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Fig. 1 Quantum circuit with the encoding function Φ(xxx) = {φ1(xxx),φ2(xxx),φ12(xxx)} composed of the three
phase-shift gates of the form u1(θ ) = diag{1,e−iθ } and two C-NOT gates.

and the density operator can be always expanded by the set of Pauli operators as

ρ(xxx) =
4n

∑
i=1

ai(xxx)σi (3)

with ai(xxx) ∈ R and σi ∈ Pn = {I,X ,Y,Z}⊗n the multi-qubit Pauli operators. The fol-
lowings are the example elements of P2:

XI =

[
0 1
1 0

]
⊗
[

1 0
0 1

]
, ZY =

[
1 0
0 −1

]
⊗
[

0 i

−i 0

]
, YZ =

[
0 −i

i 0

]
⊗
[

1 0
0 −1

]
.

Then, by substituting Eq. (3) into Eq. (2) and using the trace relation tr(σiσ j)= 2nδi, j,
the kernel can be written as

K(xxx,zzz) = 2n
4n

∑
i=1

ai(xxx)ai(zzz). (4)

This expression means that the vector of coefficients aaa(xxx) = [a1(xxx), . . . ,a4n(xxx)]$ is
also interpreted as a feature map corresponding to the kernel K(xxx,zzz). That is, the
input dataset {xxxi} are encoded into the set of vectors {aaa(xxxi)} in a much-bigger real

feature space R4n
and will be classified by the SVM with the kernel (4). Finally note

that aaa(xxx) is a generalization of the Bloch vector, and thus the corresponding feature
space is the generalized Bloch sphere.

2.2 Feature map for 2-dimensional input data

We now focus on the case of two-dimensional input data xxx ∈ R2 and particularly
follow the procedure of [12]; in the case n= 2, an input data xxx is mapped to the unitary
operator UΦ(xxx) through the set of encoding functions Φ(xxx) = {φ1(xxx),φ2(xxx),φ1,2(xxx)},

which is composed of two layers of Hadamard gate H⊗2 and the unitary UΦ(x) as
follows:

UΦ(xxx) =UΦ(xxx)H
⊗2UΦ(xxx)H

⊗2, (5)

where
UΦ(xxx) = exp(iφ1(xxx)ZI + iφ2(xxx)IZ + iφ1,2(xxx)ZZ) . (6)

The quantum circuit representation realizing this unitary gate is shown in Fig. 1.
The three user-defined encoding functions φ1(xxx),φ2(xxx), and φ1,2(xxx) nonlinearly trans-
form the input data xxx into the qubit |Φ(xxx)〉 = UΦ(xxx) |0n〉. Now, through a lengthy

Classical input Quantum encoding

Analyzing feature space via Pauli decomposition for quantum classifier 5

Fig. 2 Procedure for calculating the classification rate for the 1-dimensional data {ai(xxx)}.

calculation, we have the explicit Pauli decomposed form (3) of the density opera-
tor ρ(xxx) = |Φ(xxx)〉〈Φ(xxx)|; the coefficients {ai j(xxx)} with i, j = I,X ,Y,Z are listed in
Table 1. The coefficients are composed of bunch of trigonometric functions, which
make the kernel complicated enough to transform the input data highly nonlinearly.

Table 1 Pauli decomposition coefficients for 2 dimensional input data, {ai j(xxx)} with i, j = I,X ,Y,Z.

Index i j Pauli decomposition coefficients ai j

II 1/4

IX {sinφ2(sinφ1 sinφ12
2 + sinφ2 cosφ12

2 + cosφ1 cosφ2 sinφ12)}/4

IY {−sinφ1 cosφ2 sinφ12
2 − sinφ2 cosφ2 cosφ12

2 + cosφ1 sinφ2
2 sinφ12}/4

IZ cosφ2 cosφ12/4

XI {sinφ1(sinφ2 sinφ12
2 + sinφ1 cosφ12

2 + cosφ2 cosφ1 sinφ12)}/4

YI {−sinφ2 cosφ1 sinφ12
2 − sinφ1 cosφ1 cosφ12

2 + cosφ2 sinφ1
2 sinφ12}/4

ZI cosφ1 cosφ12/4

XX {sinφ1
2 sinφ2

2 + sinφ12 cosφ1 cosφ2(sinφ1 + sinφ2)}/4

XY {−sinφ1
2 sinφ2 cosφ2 + sinφ12 cosφ1(sinφ1 sinφ2 − cosφ2

2)}/4

XZ {cosφ12(−sinφ2 cosφ1 sinφ12 + cosφ2 sinφ1
2 + sinφ1 cosφ1 sinφ12)}/4

YX {−sinφ2
2 sinφ1 cosφ1 + sinφ12 cosφ2(sinφ1 sinφ2 − cosφ1

2)}/4

YY {sinφ1 cosφ1 sinφ2 cosφ2 − sinφ12(cosφ2
2 sinφ1 + sinφ2 cosφ1

2)}/4
YZ {sinφ1(−sinφ2 sinφ12 cosφ12 − cosφ1 cosφ2 cosφ12 + sinφ1 cosφ12 sinφ12)}/4

ZX {cosφ12(−sinφ1 cosφ2 sinφ12 + cosφ1 sinφ2
2 + sinφ2 cosφ2 sinφ12)}/4

ZY {sinφ2(−sinφ1 sinφ12 cosφ12 − cosφ2 cosφ1 cosφ12 + sinφ2 cosφ12 sinφ12)}/4
ZZ cosφ1 cosφ2/4

2.3 Minimum accuracy

Here we give a convenient method for calculating the minimum accuracy. First, for
a fixed index i and the given training dataset {xxxk,yk}k=1,...,N , we calculate the clas-
sification rate Ri achieved by the function ai(xxx), through the following procedure:
(i) for a fixed threshold between two neighboring data points, indicated by an arrow
shown in Fig. 2, calculate the error rate of the classification task via this threshold
on the 1-dimensional dataset {ai(xxxk)}k=1,...,N , (ii) calculate the error rates for all the
thresholds, and finally (iii) set the minimum error rate to Ri. Then, the minimum ac-
curacy is defined as maxiRi, where the index now takes i= 1, . . . ,16. Importantly, this
procedure for obtaining the minimum accuracy can be readily done, because the data
points are directly produced from the functions {ai(xxx)} listed in Table 1 and each
classification task is merely a line search. Also note that Ri represents the success
rate of classification via the hyperplane orthogonal to the ith axis; in view of the fact
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