

Monitoring and reporting of embedded emissions in the transitional CBAM period

Thursday 16 November, Beijing

European Commission / DG TAXUD / C2 Unit

Monitoring and reporting in the transitional CBAM period

CBAM methodology

Monitoring and reporting in the transitional CBAM period

What are the reporting obligations in the transitional period?

October 2023 – December 2025

CBAM report containing the following:

- Total quantity of goods imported during the preceding quarter
- Total embedded direct and indirect emissions
- The carbon price due in the country of origin for the embedded emissions

Report to be submitted quarterly

How to submit a report?

Who is responsible for the reporting?

• The reporting declarant

Same as the authorised CBAM declarant but no authorisation
needed yet

How to submit a report?

Is there flexibility for the submission?

- Gain access to the CBAM transitional registry request log-in via portal
- Fill out mandatory fields in the registry
- Indicate if reporting is by importer or on behalf of an importer
- Submit the report no later than 1 month after the quarter
- Yes A report can be modified 2 months after the reported quarter
- For the first two CBAM reports (due January and April 2024), modification is accepted until **July 2024** (deadline of third report)
- After the deadlines possibility to request reopening for correction

What to submit?

Role of thirdcountry operators of installations

- Monitor and collect data on embedded emissions –Possibility to use templates and guidance docs provided by the Commission
- Communicate data to reporting declarants Possibility to use templates provided by the Commission
- Is verification needed: Not yet!

What information is necessary to be communicated for the reporting

- Information on the goods: Quantity / Type identified by CN code (8-DIGIT) / Country of origin
- Info on the installation: Company name / Address / Location / Geo coordinates
- Info on the production: Routes / Parameters
- Information the emissions: Specific direct and specific indirect
- Information on carbon price paid at production country (also for precursors)

What is the scope for emissions during the transitional period?

(1) Direct emissions include emissions from the production of heating and cooling, even if that production takes place outside the installation.

Monitoring and reporting in the transitional CBAM period

Key Terms

Simple goods

 goods produced from fuels and raw materials considered to have zero embedded emissions under CBAM

Complex goods

 goods produced from other CBAM goods (either simple or other complex goods)

Aggregated goods category

 group of CBAM goods with different CN codes but similar characteristics

Production process

 chemical or physical processes carried out in parts of an installation to produce goods under an aggregated goods category and its specified system boundaries

Production route

 specific technology used in a production process to produce goods for each aggregated goods category and production route: provisions on system boundaries (inputs, outputs and corresponding emissions), emission monitoring and relevant precursors

Steps to determine specific embedded emissions

Step 1. Define the system boundaries associated with the production processes

Step 2. Identify relevant parameters and methods, then carry out monitoring

Step 3. Attribute emissions to production processes and then to goods

Step 4. Add the specific embedded emissions of relevant precursors

Step 5. Determine the specific embedded emissions of CBAM goods

Step 1: Define the system boundaries – Example

Carbon steel production, blast furnace route – Definition of separate production processes

Step 2: Monitoring – General

Direct emissions from fuels and materials

• Standard method, mass balance, continuous emissions monitoring

Direct emissions related to heat flows, if relevant

- Determine heat flows
- Emissions = heat flow × corresponding emission factor

Electricity produced, if relevant

Indirect emissions related to electricity consumption

 Determine electricity consumption for the production of CBAM goods

Waste gases, if relevant

Determine flows and calorific values

Precursors, if relevant

Determine precursor consumption

Step 2: Monitoring – Direct emissions

1 Calculation-based methodology

Standard method

- determine quantities of fuels and input materials consumed
- determine calculation factors such as net calorific value and emission factor
- determine emissions by multiplying consumption with calculation factors

Mass balance

- determine carbon content in all fuels and input materials
- determine carbon content in all output materials
- determine emissions as difference between inputs and outputs
- typically relevant where carbon remains in the goods produced (e.g. steel).

2 Measurement-based methodology

Continuous emissions monitoring system

- measure GHG concentration directly in the stack or using extractive procedures (e.g. for nitrous oxide)
- measure flue gas flow
- determine emissions

Step 2: Monitoring – Other methods (flexibilities)

- 1. Other monitoring and reporting methods until 31 December 2024, if similar coverage and accuracy of emissions data:
 - A carbon pricing scheme where the installation is located.
 - A compulsory emission monitoring scheme where the installation is located.
 - An emission monitoring scheme at the installation which can include verification by an accredited verifier.
- 2. Other referenced methods including default values until 31 July 2024
- 3. Estimation of up to 20% of the total embedded emissions in the case of complex goods (includes the use of default values)

AND INCOMENTS OF REAL PROPERTY OF REAL PROPERTY.

Step 3: Attribution of direct emissions

Step 3: Attribution of indirect emissions

Emission factor of electricity

1) General case: use of default values

- average emission factor of the country of origin, based on IEA data
- other emission factors based on publicly available data (average emission factor or CO₂ emission factor)

2) Use of actual emission factors, in the case of:

- direct technical connection or
- power purchase agreement

Steps 4 & 5: Precursors and calculation of specific embedded emissions

17

Monitoring and reporting in the transitional CBAM period

3 Iron and steel example

Worked iron & steel example (1/6)

Carbon steel production, blast furnace route – complete monitoring approach

Worked iron & steel example (2/6)

Mass balance to determine direct emissions

AD = Activity data, CC = carbon content

Inputs	AD (tonnes)	СС	Bio fraction	Emissions (t CO ₂)*	Comments
Coke fines	50 000	88,0%		161 216,0	
Iron ores	5 600 000	0,023%		4 719,2	
Coke	2 200 000	88,0%		7 093 504,0	
Plastics waste	70 000	68,4%	16%	147 270,8	Biomass fraction = 28052 t CO_2
Scrap (external)	800 000	0,210%		6 155,5	100
Scrap (internal)	200 000	0,180%		1 319,0	1998
Lime calcined	280 000	0,273%		2 800,0	
Natural gas	170 000	75,0%		467 160,0	A New York
Other inputs	40 000	10,0%		14 656,0	Store - Store
Sum				7 898 800,6	
Outputs	AD (tonnes)	СС	Bio fraction	Emissions (t CO_2)*	Comments
Steel	-4 800 000	0,180%		-31 657,0	
Slags	-1 000 000	0,030%		-1 099,0	5
Sum				-32 756,2	
Total direct emiss	ions of the in	stallation	า	7 866 044,4	THAT

* Using a factor of 3,664 t CO_2 / t C

20

Worked iron & steel example (3/6)

Determination of total attributed direct emissions (correction for waste gas export)

			t CO ₂ / year	Comment
Total direct emissions of the installation			7 866 044	From previous slide
	AD (TJ)	EF (Natural gas)		
Deduction for waste gases	-12 800	56.1	-478 959	Takes into account a correction factor of 0,667
Total attributed direct emissions of the production process for crude steel products			7 387 085	

Worked iron & steel example (4/6)

Determination of indirect emissions

Input	AD (MWh)	Emission factor (t CO ₂ / MWh)	Comments
Electricity from the grid (25%)	414 711	0,628	Mix of 50% coal, 30% natural gas, rest renewable energy sources
Electricity from waste gas combustion (75%)	1 244 133	0,576	Emission factor slightly higher than for natural gas
Total electricity consumption	1 658 844	0,589	Weighted average of the emissions factors for the electricity from the grid and from waste gas combustion
Indirect emissions		Indirect emissions (t CO ₂)	
Total indirect emissions		977 059	A CONTRACT

Worked iron & steel example (5/6)

Goods produced in the reporting period

Products	Activity level (AL)	Units	
Precursors			
Pig iron	4 000 000	t / year	
Crude steel	5 000 000	t / year	
Iron or steel products		ANS	
Sheets	3 500 000	t / year	
Bars	800 000	t / year	
Rails	500 000	t / year	
Total goods produced	4 800 000	t / year	
Internal scrap	200 000	t / year	

Worked iron & steel example (6/6)

Specific embedded emissions SEE under the simplified "bubble" approach for iron or steel products

Total amount of goods produced (steel products)	4 800 000	t / year
Total direct emissions of the production process for steel products	7 387 085	t CO ₂ / year
Total indirect emissions of the installation	977 059	t CO ₂ / year
Specific direct embedded emissions	1.539	t CO ₂ / steel product
Specific indirect embedded emissions	0.203	t CO ₂ / t steel product
Specific total embedded emissions	1.742	t CO ₂ / t steel product

The Carbon Border Adjustment Mechanism

Thank you for your attention!

If you have any questions, please contact us:

TAXUD-CBAM@ec.europa.eu